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Exact zeros of the partition function for a continuum system with double Gaussian peaks
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We calculate the exact zeros of the partition function for a continuum system where the probability distri-
bution for the order parameter is given by two asymmetric Gaussian peaks. When the positions of the two
peaks coincide, the two separate loci of the zeros that used to give a first-order transition touch each other, with
the density of zeros vanishing at the contact point on the positive real axis. Instead of the second-order
transition of the Ehrenfest classification as one might naively expect, one finds a critical behavior in this limit.

PACS numbs(s): 64.60.Fr, 05.70.Fh, 02.30.Dk, 02.50.Cw

I. INTRODUCTION order transition of the Ehrenfest classificatipl¥], where
there is a finite discontinuity in specific heat but no latent

It has been a central theme since the discovery of statidieat(Fig. 1).
tical mechanics to understand how the analytic partiion However, when we consider the exact zeros of the parti-
function for a finite-size system acquires a singularity in thetion function for the system with two Gaussian peaks, we
thermodynamic limit if the system undergoes a phase transﬂnd there IS a branCh of zeros Other than the one descnbed N
tion [1]. The Lee-Yang theory2] has partly furnished the Ref.[13]. Forl#0, this branch can be neglected, since for
answer to this quest. They proposed a scenario where tHgeneric systems the Gaussian approximation breaks down at
zeros of the partition function form a line and cut across thethis point due to the contributions from the higher order cu-
real axis. They showed that the discontinuity in the first-mulants. However, fot =0 this is no longer true and we
order derivative of the partition function is proportional to have to take this branch into account. Because of this, the
the angu|ar density of Zeros, using an anak)gy with tWOsyStem eXhlbltS a critical behavior instead of the second-
dimensional electrostatics. Then they proved this scenarigrder transition.
for Ising-like discrete systems under very general conditions.
They could show that the zeros were distributed on a unit Il. LOCUS AND DENSITY OF ZEROS
circle in this case.

There have been many attempts to generalize the Lee- We consider a canonical partition function of a continuum
Yang circle theorem ever since. Fisligt initiated a study of ~ System, which can be written as in REL3],
zeros of the partition function in the complex temperature
plane and extensive studies of this topic followdd-12]. In . N
these works the authors considered continuous phase transi- MO=Z(B)IZ(Bo) = fﬁwetxf(x)dx, (2.9)
tions or critical points.
_ The conceptual basis of the Lee-Yang circle theorem waghere the probability density function is given by
finally clarified in Ref.[13] by considering the first-order
transition of a system with more general continuous degrees
of freedom, with a doubly peaked probability distribution for
the order parameter. Since the Ising-like models considered
by Lee and Yang would be described by two symmetric (@)
Gaussian peaks in the thermodynamic limit, this result pro-
vides a simple conceptual basis for the Lee-Yang unit circle
theorem. Furthermore, it is a generalization since general
asymmetric configurations were considered, whose zeros ()
form a curve that is not a unit circle in general.

One interesting problem to consider is what happens
when the positions of the two Gaussian peaks coincide.
Since this is the limit where the latent hdatanishes, one

E/N

might naively expect that the system would exhibit a second- 15 B./B
FIG. 1. The energy density as a function of the reduced tem-
*Electronic address: jul@hepl.c.u-tokyo.ac.jp perature at the second-order transition. The brafghs for Ac
TElectronic address: kclee@phya.snu.ac.kr >0 and(b) is for Ac<O0.
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t=1- /By, x=BoE, Q(E) is the density of states at en- m
ergyE, andg, is the inverse of the transition temperature we ~2
are interested in. When one is interested in a field driven
phase transition, one may replace the endtdy the mag- where
netizationM and the inverse temperatugeby the magnetic

field H in the case of magnetic systems, and so on. We in- { \/( m? In a)2 5 ( m? In a)

=X, 2.9

vestigate the locus of zeros on the plane of complex tempera- A=
turez=re'’=e¢".

Now consider the case of interest in this paper, whee)
is given by a summation of two Gaussian peaks up to nory

(2.9

Note that there are two branches of solutions. One passes

malization, through the transition poirtt=0 in the thermodynamic limit
and the other does not, so the latter was implicitly discarded
1 (X—uq) 1 in Ref. [13]. As we will see, the second branch closes in
f(x)= on exp( T2 aJ_ towardt=0 as we take the limit—0.
o1 71 72 Now we redefine the variables
2
><exp< - M . (2.3 _ N_'
20’2 m 2 ’
These two peaks represent two different phases of the sys- Ny
tem. Whenu,# u, the system undergoes a first-order tran- 'k:T'
sition. Let us denote two Gaussian functions flqyx) and
f5(x). Since we can relabdl; and f,, and redefinea, we _ NAc
may assumen= (u,— u)/2>0 without loss of generality. UZZT’ (2.10

We then have
and consider the thermodynamic lintNt— . We then get

M(t)=j:etx[fl(x)+af2(x)]dx

B m [l
In(ry)=Re(ty)=— ?ilh |
=exp(¢1) +expli), (2.9 k
where _ i + |yud
¢ V127 yA ez 12
eXF{I/fl(t)]Ef ef1(x)dx,
=Im(ty) = +Sgr(|k)
exp{gbz(t)]zf eafy(x)dx. (2.5 1/ 1 \* y2
= sgnyw Z(E) * ao?
From the expressions above, one can easily see that the lo- ERREL:
cations of zeros are given by the solutions to the following _ 5 (2.11)
equation as in Ref13]: 2(Ac)

oy The terms involving Ira are finite-size corrections and van-
Pa(t) = Pty =2il=i(2k+ 1), (2.6 ish in this limit. We solve the second equation (&f11) in
terms ofy, to get
wherek runs through all the integers. For the double Gauss-

ian distribution the equation above can be rewritten as H[ Ac 2

~2
il =3lna+m(t,)+ U—(tk)z, (2.7  We substitute Eq(2.12) into the first equation 0f2.11) to
2 get the locus of zeros,

whereo?= (03— 0?)/2. This equation is quadratic and easily ! ,[Ac
i c=exg - i\ 1R | | @
solved. The solutions are F==8H "~ xc |Ac]| 1+ 6 | (213
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We can also obtain the angular density of zeros. By taking ~ f
the formal derivative with respect to the intedemwe get /

. [ / \
A / !
I ;oo ‘ -
‘dek _ 1 ’J‘ \\ /ﬁ \ / “.‘ /, ‘2\
T | \ | / y
dk 5 12 / | / \\\ / \\ / \\\
2 —(l/Ac)*+yEl(Ac)®—12/2(Ac)? \ S\
4 0 -5 0 5 10 15 -10 -5 0 5 10 15
(a) (b)
2yk7T ) -
X 1 /y \\ /// \\
I \ { \\
N(Ac)z\/Z(I/Ac)“erﬁ/(Ac)z / \ ﬁ’; \
;o / |
[ { \
[ \
27V 1+ 6%(Ac/l)? 014 N /A
N[I2+2(AC)292] 10 -5 O(c) 5 0 15 E/Nw 25 2((::1) 5 -0
Therefore, the angular densities of zergs of the two

branches are given by

) _2m|dy 1+2(Ac/1)?6? 01
"= (0=N a0~ T aonze 2P

lll. FIRST-ORDER TRANSITIONS

We will now consider both loci of zeros of the partition 2lJAc oo t
function at a first-order transition. Note that all the quantities (e
above depend only on the ratibAc except for an overall
factor of | in front of g(6).! Whenl/Ac#0, we get the

first-order transition. This is the case considered in Rd].  u1,=*5 in this example(a) For t>0 peak 2 dominategb) At
There only the loci of zeros near the transition pdirt0 ~ t=0 the weights of the two Gaussian peaks are equal by construc-
were treated carefully since these were the only things ofion, meaning the areas under the curves are sag)eAs t de-
interest. In fact, for generic systems we expect that th&reases below 0, the weight of peak 1 becomes larger. The first-
Gaussian approximation breaks down away from the transiorder transition has occurred with latent hieand a discontinuity in
tion pointt=0 due to the higher order cumulants. the specific heaAc. The positions of the peaks begin to be shifted
Let us elaborate on this point. The locus of zeros crosse® e left, with peak 2 moving fastefd) For t<—2l/Ac, the
the real axis at=0 andt=—2I/Ac, indicating that there are weight of peak 2 becomes larger than that of 1 again. At this point
two phase transitions. This can ’be easilv understood Th%eak 2 is at the left of peak 1, so this is another first-order transition,
P . - T y und " with latent heal and a discontinuity in the specific heatAc. (e)
probability density at arbitrary temperature is given by

Schematic diagram of energy versus reduced temperature for the
etxe*(xfxl)zf(&’i) etxe,(X,XZ)z,(z(,g) system with double Gaussian peaks. Note that there are two first-
+

order transition with the same latent heat but opposite sign for the
V2moy 270, discontinuity in the specific heat. The transitiontat—2l/Ac is
discarded for generic systems.

FIG. 2. Qualitive behavior 0™ (x) versusx, where we take

e (x)=

o (x—x - o20)2(20%) +xyt+ o2t22

W /W ex;{( 2 )t (X] X )t (32)
2 . .
e~ (X*X2*021)2/(20’2)+X2t+ 02t2/2

+ (3.9

270y

By construction, at=0, the weights of the two Gaussian
We see that for nonzero the positions of the peaks are peaks are equal. Assuming> o, we see that fot>0 the

shifted, and also the relative weights change. We see that thgeak labeled 2 dominates. Whebecomes slightly negative,
position of the peak for larger; gets shifted by a larger then the peak 1 dominates. Also, the positions of the Gauss-
amount for given temperature change, consistent with théan peaks are shifted to the left, but peak 2 moves faster. For

fact that it has larger specific heat. The weight of the peak }< — (Xl_xz)/(gi_ o%) peak 2 goes to the left of peak 1. At
relative to the peak 2 is given by

t=—2I/Ac, the weight of peak 2 becomes equal to that of 1
again, and peak 2 is dominant fox —2I/Ac. Therefore at

this temperature there is another first-order transition with
“When bothl andAc are zero these quantities are ill defined andlatent heal and specific heat changeAc. We can make

we can no longer use the Gaussian approximation. One then has gmilar arguments folr,>o,. This process is depicted in
take into account higher order cumulants. Fig. 2.
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FIG. 3. (@ Ac/l=1. As Ac/l -0, the outer curve becomes a  FIG. 4. (@ o?/m=Ac/I=10. The zeros for finite\ are also

unit circle and the inner curve degenerates to the originAc/I plotted as dots, for @=NAc=10 anda=1.0. The dots deviate
=—1. AsAc/I—0, the inner curve becomes a unit circle and thefrom the curve ifa#1.0. (b) Magnification of the box ina). The
outer curve goes away to infinity. horizontal line indicates the real axis, and the vertical line is given

by Re(z)=1. Note that the outer curve passes through the point

This mechanism works Only if we trust that the Gaussian™ 10, and the angleS between both loci and the real axis are 90°.
form given in Eqg.(2.3) is exact. However, for a generic

system, this is just a leading truncation of the cumulant exPlane.t. is the outer curve antl is the inner curve. Only
pansion the zeros in the first Riemann sheet are shown. WheH

>0(<0),t, (t_) passes through=0, and becomes a unit
7(Xo) circle as one approaches the symmetric litn@/| — 0. This
(Ax) is consistent with Lee-Yang's unit circle theorem. The other
brancht_(t,) degenerates to the origifgoes to infinity.
} The loci intersect the real axis orthogonally as lond 49€.

exr[—Nf(x)]=exr{ —N( f(xg) +

ol ;’I(O) (AX)3+ 3.3

IV. |—=0 LIMIT AND THE CRITICAL BEHAVIOR
so the higher order cumulants can be ignored only when
Ax<O(1/yN). But at the first-order transition at=
—2l/Ac, the system is dominated by the peaks which ar
located at distances @(1) from the positions of the peaks
att=0. Therefore the higher order cumulants will contrib-
ute, and we cannot trust the picture above. However, when ro=exp=|6)). 4.1
Ax<O(1/\N), or when the higher order cumulants are ex- -
tremely small for some reason, the transitiortat—2I/Ac  The density of zeros is
can no longer be neglected. In particular, in the limit0,
the second branch touches the first branch, preventing the 279(0)=27[g.(6)+g_(6)]=4Ac|6|. (4.2)
system from exhibiting the second-order transition.

The behaviors of the loci of zeros for various values ofNote thatg(#) is zero atd=0, consistent with the fact that
Ac/l are depicted in Figs. 3-5 in the complexexpf) the first derivative of the partition function has no disconti-

The limit /Ac=0 may be considered as the opposite
limit from the symmetric caséc/I=0. Now the two loci
ett , which were separate whdm-0, touch each other at
=0 and form a single curvé-ig. 6). Their loci are given by
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FIG. 5. (3)Ac/l = —10. The dots indicate zeros fo3=NAc FIG. 6. (a) 1=0. The zeros foN|Ac|=10 are plotted, with the
=-10 anda=1.0. (b) Magnification of the box in(a). It is the same notation as beforéh) Magnification of the box in(a). Note
inner curve that passes througk 1.0 in this case. that the two loci are now joined to form a single curve, which

intersects the real axis at=1.0 at the angle of 45°. Bothc>0

nuity. The loci intersect the real axis at angles of 45°, and théFig- 4 andAc<0 (Fig. 5 approach this limit a—0.

intermediate region dominated by peak 1 with the smaller ) . )
specific heat, which used to separate two domains dominateg example of a _dls_cre_te system wh(_)se crmcal_ behavior at
by peak 2 with the larger specific heat, touches the real axi e thermodynamic limit can be described by this model.

at just one point. Therefore the system is dominated by peak

2 for t#0, and peak 1 has same weight as peak 2 only at ACKNOWLEDGMENTS
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