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Exact zeros of the partition function for a continuum system with double Gaussian peaks
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We calculate the exact zeros of the partition function for a continuum system where the probability distri-
bution for the order parameter is given by two asymmetric Gaussian peaks. When the positions of the two
peaks coincide, the two separate loci of the zeros that used to give a first-order transition touch each other, with
the density of zeros vanishing at the contact point on the positive real axis. Instead of the second-order
transition of the Ehrenfest classification as one might naively expect, one finds a critical behavior in this limit.
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I. INTRODUCTION

It has been a central theme since the discovery of sta
tical mechanics to understand how the analytic partit
function for a finite-size system acquires a singularity in
thermodynamic limit if the system undergoes a phase tra
tion @1#. The Lee-Yang theory@2# has partly furnished the
answer to this quest. They proposed a scenario where
zeros of the partition function form a line and cut across
real axis. They showed that the discontinuity in the fir
order derivative of the partition function is proportional
the angular density of zeros, using an analogy with tw
dimensional electrostatics. Then they proved this scen
for Ising-like discrete systems under very general conditio
They could show that the zeros were distributed on a u
circle in this case.

There have been many attempts to generalize the L
Yang circle theorem ever since. Fisher@3# initiated a study of
zeros of the partition function in the complex temperatu
plane and extensive studies of this topic followed@4–12#. In
these works the authors considered continuous phase tr
tions or critical points.

The conceptual basis of the Lee-Yang circle theorem w
finally clarified in Ref. @13# by considering the first-orde
transition of a system with more general continuous degr
of freedom, with a doubly peaked probability distribution f
the order parameter. Since the Ising-like models conside
by Lee and Yang would be described by two symme
Gaussian peaks in the thermodynamic limit, this result p
vides a simple conceptual basis for the Lee-Yang unit cir
theorem. Furthermore, it is a generalization since gen
asymmetric configurations were considered, whose ze
form a curve that is not a unit circle in general.

One interesting problem to consider is what happ
when the positions of the two Gaussian peaks coinc
Since this is the limit where the latent heatl vanishes, one
might naively expect that the system would exhibit a seco
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order transition of the Ehrenfest classification@14#, where
there is a finite discontinuity in specific heat but no late
heat~Fig. 1!.

However, when we consider the exact zeros of the pa
tion function for the system with two Gaussian peaks,
find there is a branch of zeros other than the one describe
Ref. @13#. For lÞ0, this branch can be neglected, since
generic systems the Gaussian approximation breaks dow
this point due to the contributions from the higher order c
mulants. However, forl 50 this is no longer true and we
have to take this branch into account. Because of this,
system exhibits a critical behavior instead of the seco
order transition.

II. LOCUS AND DENSITY OF ZEROS

We consider a canonical partition function of a continuu
system, which can be written as in Ref.@13#,

M~ t ![Z~b!/Z~b0!5E
2`

`

etxf ~x!dx, ~2.1!

where the probability density function is given by

FIG. 1. The energy density as a function of the reduced te
perature at the second-order transition. The branch~a! is for Dc
.0 and~b! is for Dc,0.
4558 ©2000 The American Physical Society
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f ~x!5V~x/b0!e2x/E
2`

`

V~x/b0!e2xdx, ~2.2!

t512b/b0 ,x5b0E, V(E) is the density of states at en
ergyE, andb0 is the inverse of the transition temperature w
are interested in. When one is interested in a field driv
phase transition, one may replace the energyE by the mag-
netizationM and the inverse temperatureb by the magnetic
field H in the case of magnetic systems, and so on. We
vestigate the locus of zeros on the plane of complex temp
ture z5reiu[et.

Now consider the case of interest in this paper, whenf (x)
is given by a summation of two Gaussian peaks up to n
malization,

f ~x!5
1

A2ps1

expS 2
~x2m1!2

2s1
2 D 1a

1

A2ps2

3expS 2
~x2m2!2

2s2
2 D . ~2.3!

These two peaks represent two different phases of the
tem. Whenm1Þm2 the system undergoes a first-order tra
sition. Let us denote two Gaussian functions byf 1(x) and
f 2(x). Since we can relabelf 1 and f 2, and redefinea, we
may assumem[(m22m1)/2.0 without loss of generality.
We then have

M~ t !5 È`

etx@ f 1~x!1a f2~x!#dx

5exp~c1!1exp~c2!, ~2.4!

where

exp@c1~ t !#[E etxf 1~x!dx,

exp@c2~ t !#[E etxa f2~x!dx. ~2.5!

From the expressions above, one can easily see that th
cations of zeros are given by the solutions to the follow
equation as in Ref.@13#:

c2~ tk!2c1~ tk!52i I k[ i ~2k11!p, ~2.6!

wherek runs through all the integers. For the double Gau
ian distribution the equation above can be rewritten as

i I k5 1
2 ln a1m~ tk!1

s̃2

2
~ tk!

2, ~2.7!

wheres̃25(s2
22s1

2)/2. This equation is quadratic and eas
solved. The solutions are
n

-
a-

r-

s-
-

lo-

-

tk
652

m

s̃2
6

A2

us̃u
Ai I k2 1

2 ln a1m2/2s̃2

52
m

s̃2
6

uI ku

ulks̃u
6 i sgn~ I k!Ulk

s̃
U , ~2.8!

where

lk[FAS m2

2s̃2
2

ln a

2 D 2

1I k
22S m2

2s̃2
2

ln a

2 D G 1/2

.

~2.9!

Note that there are two branches of solutions. One pa
through the transition pointt50 in the thermodynamic limit
and the other does not, so the latter was implicitly discard
in Ref. @13#. As we will see, the second branch closes
toward t50 as we take the limitl→0.

Now we redefine the variables

m5
Nl

2
,

I k5
Nyk

2
,

s̃25
NDc

2
, ~2.10!

and consider the thermodynamic limitN→`. We then get

ln~r k![Re~ tk!52
m

s̃2
6

uI ku

us̃lku

52
l

Dc
6

uyku

AA~ l 2/2!21yk
2~Dc!22 l 2/2

,

uk[Im~ tk!56sgn~ I k!Ulk

s̃
U

56sgn~yk!FA1

4S l

DcD 4

1
yk

2

~Dc!2

2
l 2

2~Dc!2G1/2

. ~2.11!

The terms involving lna are finite-size corrections and van
ish in this limit. We solve the second equation of~2.11! in
terms ofyk to get

yk56uklA11uk
2S Dc

l D 2

. ~2.12!

We substitute Eq.~2.12! into the first equation of~2.11! to
get the locus of zeros,

r 65expF2
l

Dc
6

l

uDcuA11uk
2S Dc

l D 2G . ~2.13!
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We can also obtain the angular density of zeros. By tak
the formal derivative with respect to the integerk, we get

Uduk

dk
U5 1

2FA1

4
~ l /Dc!41yk

2/~Dc!22 l 2/2~Dc!2G 1/2

3
2ykp

N~Dc!2A1

4
~ l /Dc!41yk

2/~Dc!2

5
2p lA11u2~Dc/ l !2

N@ l 212~Dc!2u2#
. ~2.14!

Therefore, the angular densities of zerosg6 of the two
branches are given by

2pg6~u![
2p

N Udk

duU5 l
112~Dc/ l !2u2

A11~Dc/ l !2u2
. ~2.15!

III. FIRST-ORDER TRANSITIONS

We will now consider both loci of zeros of the partitio
function at a first-order transition. Note that all the quantit
above depend only on the ratiol /Dc except for an overall
factor of l in front of g(u).1 When l /DcÞ0, we get the
first-order transition. This is the case considered in Ref.@13#.
There only the loci of zeros near the transition pointt50
were treated carefully since these were the only things
interest. In fact, for generic systems we expect that
Gaussian approximation breaks down away from the tra
tion point t50 due to the higher order cumulants.

Let us elaborate on this point. The locus of zeros cros
the real axis att50 andt522l /Dc, indicating that there are
two phase transitions. This can be easily understood.
probability density at arbitrary temperature is given by

etxV~x!5
etxe2(x2x1)2/(2s1

2)

A2ps1

1
etxe2(x2x2)2/(2s2

2)

A2ps2

5
e2(x2x12s1

2t)2/(2s1
2)1x1t1s1

2t2/2

A2ps1

1
e2(x2x22s2

2t)2/(2s2
2)1x2t1s2

2t2/2

A2ps2

. ~3.1!

We see that for nonzerot the positions of the peaks ar
shifted, and also the relative weights change. We see tha
position of the peak for larges i gets shifted by a large
amount for given temperature change, consistent with
fact that it has larger specific heat. The weight of the pea
relative to the peak 2 is given by

1When bothl andDc are zero these quantities are ill defined a
we can no longer use the Gaussian approximation. One then h
take into account higher order cumulants.
g

s

f
e
i-

es

e

he

e
1

w1/w2[expS ~s1
22s2

2!

2
t21~x12x2!t D . ~3.2!

By construction, att50, the weights of the two Gaussia
peaks are equal. Assumings2.s1, we see that fort.0 the
peak labeled 2 dominates. Whent becomes slightly negative
then the peak 1 dominates. Also, the positions of the Ga
ian peaks are shifted to the left, but peak 2 moves faster.
t,2(x12x2)/(s1

22s2
2) peak 2 goes to the left of peak 1. A

t522l /Dc, the weight of peak 2 becomes equal to that o
again, and peak 2 is dominant fort,22l /Dc. Therefore at
this temperature there is another first-order transition w
latent heatl and specific heat change2Dc. We can make
similar arguments fors1.s2. This process is depicted in
Fig. 2.
to

FIG. 2. Qualitive behavior ofetxV(x) versusx, where we take
m1,2565 in this example.~a! For t.0 peak 2 dominates.~b! At
t50 the weights of the two Gaussian peaks are equal by cons
tion, meaning the areas under the curves are same.~c! As t de-
creases below 0, the weight of peak 1 becomes larger. The
order transition has occurred with latent heatl and a discontinuity in
the specific heatDc. The positions of the peaks begin to be shift
to the left, with peak 2 moving faster.~d! For t,22l /Dc, the
weight of peak 2 becomes larger than that of 1 again. At this po
peak 2 is at the left of peak 1, so this is another first-order transit
with latent heatl and a discontinuity in the specific heat2Dc. ~e!
Schematic diagram of energy versus reduced temperature fo
system with double Gaussian peaks. Note that there are two
order transition with the same latent heat but opposite sign for
discontinuity in the specific heat. The transition att522l /Dc is
discarded for generic systems.
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This mechanism works only if we trust that the Gauss
form given in Eq. ~2.3! is exact. However, for a generi
system, this is just a leading truncation of the cumulant
pansion

exp@2N f~x!#5expF2NS f ~x0!1
f 9~x0!

2
~Dx!2

1
f 9~x0!

3!
~Dx!31••• D G , ~3.3!

so the higher order cumulants can be ignored only w
Dx!O(1/AN). But at the first-order transition att5
22l /Dc, the system is dominated by the peaks which
located at distances ofO(1) from the positions of the peak
at t50. Therefore the higher order cumulants will contri
ute, and we cannot trust the picture above. However, w
Dx!O(1/AN), or when the higher order cumulants are e
tremely small for some reason, the transition att522l /Dc
can no longer be neglected. In particular, in the limitl→0,
the second branch touches the first branch, preventing
system from exhibiting the second-order transition.

The behaviors of the loci of zeros for various values
Dc/ l are depicted in Figs. 3–5 in the complexz[exp(t)

FIG. 3. ~a! Dc/ l 51. As Dc/ l→0, the outer curve becomes
unit circle and the inner curve degenerates to the origin.~b! Dc/ l
521. As Dc/ l→0, the inner curve becomes a unit circle and t
outer curve goes away to infinity.
n

-

n

e

n
-

he

f

plane.t1 is the outer curve andt2 is the inner curve. Only
the zeros in the first Riemann sheet are shown. WhenDc/ l
.0(,0),t1 (t2) passes throught50, and becomes a uni
circle as one approaches the symmetric limitDc/ l→0. This
is consistent with Lee-Yang’s unit circle theorem. The oth
branch t2(t1) degenerates to the origin~goes to infinity!.
The loci intersect the real axis orthogonally as long aslÞ0.

IV. l\0 LIMIT AND THE CRITICAL BEHAVIOR

The limit l /Dc50 may be considered as the oppos
limit from the symmetric caseDc/ l 50. Now the two loci
t6 , which were separate whenlÞ0, touch each other atu
50 and form a single curve~Fig. 6!. Their loci are given by

r 65exp~6uuu!. ~4.1!

The density of zeros is

2pg~u!52p@g1~u!1g2~u!#54Dcuuu. ~4.2!

Note thatg(u) is zero atu50, consistent with the fact tha
the first derivative of the partition function has no discon

FIG. 4. ~a! s̃2/m5Dc/ l 510. The zeros for finiteN are also

plotted as dots, for 2s̃25NDc510 anda51.0. The dots deviate
from the curve ifaÞ1.0. ~b! Magnification of the box in~a!. The
horizontal line indicates the real axis, and the vertical line is giv
by Re(z)51. Note that the outer curve passes through the poinz
51.0, and the angles between both loci and the real axis are 9
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4562 PRE 62JULIAN LEE AND KOO-CHUL LEE
nuity. The loci intersect the real axis at angles of 45°, and
intermediate region dominated by peak 1 with the sma
specific heat, which used to separate two domains domin
by peak 2 with the larger specific heat, touches the real
at just one point. Therefore the system is dominated by p
2 for tÞ0, and peak 1 has same weight as peak 2 onlyt
50, when their positions coincide. The qualitative behavi
of the two peaks fort.0 andt,0 are the same as the on
depicted in Figs. 2~a! and 2~d!.

Therefore the system is exhibiting a critical behav
where it is just on the verge of making a phase transiti
However, in contrast to many familiar examples of critic
behavior, the specific heat neart50 remains finite instead o
blowing up. At this stage it is not yet clear whether there

FIG. 5. ~a!Dc/ l 5210. The dots indicate zeros for 2s̃25NDc
5210 anda51.0. ~b! Magnification of the box in~a!. It is the
inner curve that passes throughz51.0 in this case.
a

e
r
ed
is

ak

s

r
.

l

s

an example of a discrete system whose critical behavio
the thermodynamic limit can be described by this model.
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FIG. 6. ~a! l 50. The zeros forNuDcu510 are plotted, with the
same notation as before.~b! Magnification of the box in~a!. Note
that the two loci are now joined to form a single curve, whi
intersects the real axis atz51.0 at the angle of 45°. BothDc.0
~Fig. 4! andDc,0 ~Fig. 5! approach this limit asl→0.
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